3-D Printing: Technology May Bring New Industrial Revolution

By and Thomas Schulz

3-D printing technology, used industrially for the last few decades, is poised to break into the mass market. Its endless and swiftly developing possibilities -- from entrepreneurial manufacturing to the potential sculpting of human organs -- could become the next industrial revolution.

Photo Gallery: The Next Dimension Photos
REUTERS/ Vienna University of Technology

When the TV series Star Trek first brought the starship Enterprise into German living rooms, the concept of a replicator was pure science fiction, a fantastical utopian vision we might experience one day centuries in the future. Replicators, something of a mixture between computer and miniature factory, were capable of creating food and replacement parts from next to nothing. They were highly practical devices, since Captain Kirk couldn't exactly take along a lot of supplies for his journeys through outer space. That futuristic vision, though, has receded far into the past -- overtaken by the present.

The real-world replicator-like technology poised to revolutionize the world is known as 3-D printing, though that term is misleading, since the process has little to do with printing. Three-dimensional printers can be as small as a suitcase or as large as a telephone booth, depending on the object they are meant to faithfully replicate from a 3-D computer blueprint. Inside the machine, the product is assembled by stacking extremely thin layers of material on top of one another, sort of like reassembling an apple that has been cut into super-fine slices.

Many different technological routes can be taken to reach the same goal. In one variation, nozzles spray liquid material into layers. Another method, which produces even better results, aims laser beams at finely powdered material, causing the grains to fuse together at precisely the spot where the beam hits. All 3-D printing techniques, however, follow the same principle: The object grows layer by layer, each one just a few hundredths of a millimeter thick, until it acquires the desired shape. This technique can be applied to steel, plastic, titanium, aluminum and many other metals.

Assembling, screwing together, adhering, welding -- all these processes are rendered obsolete when even the most complex shapes can be produced by a single machine using this casting technique. The end result can be an artificial hip, a hearing aid, a cell phone case, customized footwear or even the Urbee, a prototype car that has been making a splash.

Engineers at the European Aeronautic Defence and Space Company (EADS) have used this technique to print out an entire bicycle that only needs added tires and a chain to be fully functional. British researchers, meanwhile, have printed a maneuverable drone with a rear-engine drive. Printed components are also used in Formula 1 racing and at NASA. Dental laboratories use 3-D printers to produce crowns, while doctors experiment with artificial heart tissue. Filmmakers also print animation models and automotive parts suppliers create replacement parts.

A Slow Process

The printing of electronic components is even in the works. American corporation Xerox, for example, has developed a silver ink that functions as an electrical conductor and can be printed directly onto plastic or other materials, making it possible to integrate simple circuits into printed objects.

Given the potentially vast global impact of this new technology, it's surprising that so far only around two dozen companies dominate the market. Along with US giants 3-D Systems and Stratasys, about 10 German companies provide this technology, some of them market leaders in their respective segments, for example Eos and Concept Laser, both in the southern state of Bavaria.

Some of these German 3-D printing specialists are growing at a rate that has some industry experts hoping this nascent digital industrial age will finally see the emergence of new innovation drivers "made in Germany." German companies are seen as leaders, especially when it comes to 3-D printing of metals.

The possibilities in this field are theoretically unlimited, since in principle almost any object can be printed as long as precise digital data for it exist. Most of these printers are turned to industrial uses, massive machines that can cost €1 million or more, but there is also a growing amateur scene of hobbyists who print toy figurines, spare parts for their coffee machines or even individually designed coffee cups, working out of their basements and using printers they assemble themselves for €500 ($650).

The only limits are set by the selection of materials, the space needed for each individual printed object and one other very important factor: time. Three-dimensional printing as currently practiced is a long, slow process.

This technology is in its infancy, but the parallels to the emerging computer industry of the 1970s are hard to miss. Then, too, the first machines were clunky and their operation complicated, but their evolution happened quickly and in giant leaps.

Widespread Applications

An expert panel under US President Barack Obama sees 3-D printing as a "megatrend of the future" and the US government is putting hundreds of millions of dollars toward developing the new technology. Industrial giants including Boeing, Siemens, General Electric (GE), Samsung, Canon and Daimler are all experimenting with the related production methods.

Among the leaders in such developments is German manufacturer Eos, located in an industrial park in Krailling, a town of 8,000 near Munich. In the foyer of the company's headquarters stands a life-sized statue of the Greek goddess of victory Nike. The statue is an exact reproduction of an ancient original, down to the cracks and weathering in the material, and was produced in an Eos printer from a scan of the original museum piece.

A printed violin is also displayed in a case in the entrance area. This object's mechanical birth was about a day's work for a 3-D printer. The only extra steps necessary were to mount a few small components and strings. Music experts can hear the difference when the instrument is played. But a layperson just hears a violin.

This Bavarian high-tech company specializes in 3-D printers for industrial use, large machines that resemble oversized refrigerators or industrial ovens. Depending on their size, equipment and capabilities, these printers can cost anywhere from €150,000 to over €1 million.

The three-dimensional printing process Eos uses is known as laser sintering. Companies have been using this technique for 25 years, especially for quickly and cheaply developing prototypes and design studies, which is how Eos CEO Hans Langer first encountered the technology. A physicist who wrote his doctoral dissertation on laser technology, Langer founded Eos in 1989 and constructed his first 3-D printer for automobile manufacturer BMW, which used it to produce new car model prototypes from synthetic resin.

Other auto manufacturers, including those producing Formula 1 cars, now use the technology as well. "It's safe to assume that every auto racing team works with components from our printers," Langer says.

'Unlimited Potential'

Eos is now the global market leader in its field. The company's sales have doubled over the last three years, reaching €105 million ($138 million). At the moment the total sales volume of this market remains fairly modest at $1.3 billion, but if the trend continues, it will multiply rapidly. Wohlers Associates, a 3-D printing industry consulting firm, expects that number to triple by 2015, and to reach $6.5 billion by 2019.

"I absolutely believe this will come to be very important," says Jeffrey Immelt, CEO of global conglomerate GE. New York Mayor Michael Bloomberg, who made his own fortune in new technologies, calls 3-D printing "an exciting new industry with virtually unlimited potential" and one that "could completely revolutionize manufacturing." Assuming that 3-D printing technology continues to develop at the same rapid pace, it could indeed be revolutionary for a number of reasons:

Considerably fewer production steps, fewer tools needed and lower materials costs all spell enormous cost savings. With products no longer needing to be cut from the materials from which they are made, some 3-D printers require just 10 percent the amount of plastic or metal that conventional methods such as milling do.

Companies will no longer be tied to the economies of scale that make mass production necessary for reducing costs. Even small production batches can be profitable.

More innovative products can be brought onto the market, since this method makes it easy to try out new ideas cheaply.

Changing a product's design no longer means the entire assembly line must be reworked as well. This shortens product cycles considerably and makes it possible to introduce improvements more quickly.

Article...
  • For reasons of data protection and privacy, your IP address will only be stored if you are a registered user of Facebook and you are currently logged in to the service. For more detailed information, please click on the "i" symbol.
  • Post to other social networks

Comments
Discuss this issue with other readers!
1 total post
Show all comments
    Page 1    
1. Best post
dialus 03/07/2014
it is nice one.It is good for every time.Thank you for post.
Show all comments
    Page 1    
Keep track of the news

Stay informed with our free news services:

All news from SPIEGEL International
Twitter | RSS
All news from Business section
RSS

© SPIEGEL ONLINE 2013
All Rights Reserved
Reproduction only allowed with the permission of SPIEGELnet GmbH



From DER SPIEGEL

Click graphic to enlarge. Zoom
DER SPIEGEL

Click graphic to enlarge.


European Partners
Presseurop

Politiken

Corriere della Sera

One Million Erasmus Babies

ASEM Summit Paralyses Milan


Facebook
Twitter