Auto Revolution A Promising Future for Self-Driving Cars

The technology needed for driverless cars is here and could be ready for the market in less than a decade. Automation holds the promise of revolutionizing the automobile industry and making our streets safer, but will it spell the end of Fahrvergnügen?



A Lexus drives down the eight-lane highway outside Palo Alto, California, in heavy rush-hour traffic. Except for the rotating cylinder perched on its roof like an oversized tin can and the word "Google" on its doors, it looks like any other car. In reality, though, it's a search engine on wheels.

The Lexus steers itself down the highway all by itself. The man in the driver's seat -- Dmitri Dolgov, a software engineer for Google -- never actually touches the wheel.

Dolgov explains what the car can do, which turns out to be quite a lot. It can steer, accelerate and brake automatically; it surveys its surroundings with cameras and uses radar to measure the distance to the car in front of it; and its laser scanner -- the cylinder affixed to the roof -- monitors objects in all directions.

"See?" Dolgov asks, pointing as a car swerves in front of the Google vehicle from the right. There's no need for Dolgov to intervene. The robotic car has identified what is happening and gently brakes until there is once again a proper distance between the cars.

With its 12 vehicles, Google has the largest known test fleet of self-driving cars. All together, the Internet giant has covered over half a million kilometers (300,000 miles) in these robotic vehicles, most of it on California's public roads and highways. The cars have driven through Los Angeles, around Lake Tahoe and down the famous hairpin turns of San Francisco's Lombard Street. They have become so reliable, in fact, that Google is now taking SPIEGEL out for a demonstration.

Self-driving cars, long dismissed as a utopian pipe dream, are rapidly reaching the stage where they will be ready for the market. "We're not talking about 20 years here, but more like five," says Sebastian Thrun, initiator and director of Google's project.

Five years until the first driverless cars hit the streets? It sounds like just any of the other science-fiction ideas that seem to percolate out of the manically creative world that is Google headquarters. But could it be that the company is about to show the automobile industry what the future of mobility looks like?

In truth, however, the real surprise here is something else entirely: Everything Google can do, carmakers already do as well -- they just don't talk about it as openly. In one European Union-funded research project, Volvo successfully drove a convoy of five vehicles that only had a human driver in the lead car. BMW recently sent a robotic car on a two-hour drive from Munich to Nuremberg. And Volkswagen and a research team from Stanford University have caused a stir with their driverless Audi sports car, which that has been zipping around US racetracks.

Gradually Automating Cars

Although Google doesn't enjoy a monopoly on the field, its prominent position allows it to exert pressure on others and demonstrate the feasibility of the idea. The auto industry isn't missing the technology needed for the next revolution in mobility. It lacks the guts to put that technology on the market.

"The necessary technology for autonomous cars is already in place," confirms Lothar Groesch, an expert on safety technology. Groesch, 66, who holds a Ph.D. in physics, has spent most of his career working in development for Daimler and Bosch, the automotive parts giant. But now his job as a freelance industrial consultant allows him to speak his mind freely, rather than being limited to what his bosses want him to say.

Groesch recently helped Bosch with its development of driver assistance systems. He quickly recognized that, when taken together, all of the instruments designed to assist drivers added up to a technology suite that will ultimately make it possible to liberate cars from their drivers.

The question is whether or not people will embrace it. Carmakers' greatest fear is that this development will rob the automobile of its magic, reducing the once all-powerful driver to a passive passenger.

But the fact is that this process has already been underway for a long time. It began 20 years ago with the introduction of Electronic Stability Control (ESC) systems that apply targeted braking to individual wheels so as to prevent skidding and make sure that overzealous drivers don't lose control while accelerating around curves. Of course, most cars offer a way for people looking to drive the old way to switch the ESC system off. But, says Groesch: "That's foolishness in terms of road safety." And engineers believe that there is less and less justification for having drivers the better automated vehicle-control technology gets.

Today's cars come with radar sensors and cameras that can recognize, for example, situations where a collision may occur if the driver doesn't react in time. These cars first sound a warning, then brake fully, although often not until it's too late -- the vehicle still crashes into the obstacle but at a lower speed. "The car could do better, but it's not allowed to," Groesch explains. "It would make a lot more sense to intervene earlier, without first giving a warning. The warning only wastes time."

Freedom vs. Safety

This is where car developers -- and lawmakers -- are forced to ask themselves some weighty questions. Is the experience of driving a car something worthy of preserving? Does it lose its allure when drivers are stripped of the freedom to drive their cars themselves -- and also of the freedom to cause accidents with those cars? How much blood is society willing to spill for the sake of our freedom to drive cars by ourselves?

No other invention in the history of civilian technology has caused as much harm as the automobile has -- not airplanes or electricity or even nuclear power. A person dies in a traffic accident somewhere in the world every 30 seconds, adding up to well over 1 million deaths each year. And the World Health Organization estimates that his figure will only continue to rise as more and more people in developing countries acquire cars. What's more, human error is the cause of almost every automobile accident.

As measured by capacity, commercial airplanes and trains are up to 1,000 times safer than automobiles. And the reasons are clear: Airplanes and trains are not steered by hundreds of millions of people who have received driver's licenses without any further verification of their character or intelligence. Instead, they are controlled by a much smaller group of experts trained for precisely this task.

Additionally, the controls for vehicles traveling by rail and air are largely automated. At this point, the primary function of the driver of a high-speed train is to regularly press a so-called "dead man's switch," which informs the automatically driven train that the driver is still awake and alert. The captain of a commercial airplane, meanwhile, turns on the autopilot shortly after takeoff, and only takes over the controls again shortly before landing.

What, then, qualifies an overtired traveling salesperson to manually drive his or her car 100 kilometers or more to get home through monotonous, steady traffic on a Friday evening? And is he or she really having any fun in doing so?


Discuss this issue with other readers!
1 total post
Show all comments
Page 1
powermeerkat 02/02/2013
1. Are you kidding???
Cars are responsible for much more killings than firearms. They should be eliminated ASAP.
Show all comments
Page 1

All Rights Reserved
Reproduction only allowed with permission

Die Homepage wurde aktualisiert. Jetzt aufrufen.
Hinweis nicht mehr anzeigen.