Biologie Wie das Leben auf die Erde kam

Wie ist das Leben auf der Erde entstanden? Was genau ist Leben überhaupt? Allmählich lichtet sich der Nebel um eines der größten Geheimnisse der Natur. Im Labor wiederholen Forscher die tastenden Schritte, mit denen einst aus unbelebter Materie die ersten Organismen entstanden.

dpa

Von Jack W. Szostak und Alonso Ricardo


Jede lebende Zelle, selbst das einfachste Bakterium, wimmelt nur so von molekularen Maschinen, die einen Nanotechniker vor Neid erblassen lassen. Sie zappeln, krabbeln und schrauben sich rastlos durch die Zelle, sie zerschneiden, kleben und kopieren Erbmoleküle, sie transportieren Nährstoffe hin und her oder verwandeln sie in Energie, sie bauen und reparieren Zellmembranen, sie übertragen mechanische, chemische oder elektrische Signale - die Aufzählung scheint gar kein Ende zu nehmen, und mit jeder neuen Entdeckung wird sie länger.

Wie um alles in der Welt soll sich diese Zellmaschinerie, die vorwiegend aus Katalysatoren auf Eiweißbasis - so genannten Enzymen - besteht, vor rund 3,7 Milliarden Jahren ganz von selbst zusammengebaut haben? Gewiss, unter geeigneten Bedingungen entstehen einige Proteinbausteine, die Aminosäuren, ohne Weiteres aus einfacheren Chemikalien; das haben Stanley L. Miller und Harold C. Urey in den 1950er Jahren an der University of Chicago mit ihren legendären Experimenten nachgewiesen. Doch von dort zu Proteinen und Enzymen ist es noch ein gewaltiger Schritt.

Wenn eine Zelle Proteine synthetisiert, trennen komplizierte Enzyme die beiden Stränge der DNA-Doppelhelix voneinander, andere Enzyme lesen die darauf in Genen kodierten Protein-Bauanleitungen ab und übersetzen sie in die fertigen Produkte. So Somit tritt bei dem Versuch, den Anfang allen Lebens zu erklären, ein paradoxes Problem auf: Anscheinend sind - abgesehen von der in der DNAev gespeicherten Information - Proteine nötig, um Proteine zu fabrizieren.

Das Paradoxon verschwände allerdings, wenn die ersten Organismen ganz ohne Proteine ausgekommen wären. Neue Experimente zeigen, dass Erbmoleküle, die der DNA oder der strukturell nahe verwandten RNA ähneln, spontan hätten entstehen können. Und da solche Moleküle sich unterschiedlich zusammenzufalten und einfache Reaktionen zu katalysieren vermögen, wurden sie vielleicht fähig, sich ohne die Hilfe von Proteinen selbst zu kopieren.

Schwieriger Beginn

Wie konnte in der Frühzeit der Erde aus einfachen Molekülen genetisches Material entstehen? Betrachtet man die Funktion der RNA in heute lebenden Organismen, so liegt es nahe, dass die RNA vor der DNA auftrat. Wenn heutige Zellen ein Protein fabrizieren, kopieren sie zunächst das entsprechende Gen von der DNA in RNA und benutzen die RNA dann als Bauanleitung für das Protein. Dieser zweite Schritt könnte anfangs unabhängig existiert haben; erst später wäre die DNA dank ihrer besseren chemischen Stabilität als dauerhaftere Speicherform aufgetreten.

Es gibt noch einen weiteren Grund, weshalb Forscher annehmen, die RNA sei zuerst entstanden. Ribozyme - Enzyme aus RNA statt Protein - spielen auch in heutigen Organismen noch eine zentrale Rolle. Die Gebilde, welche die als RNA angelieferten Baupläne in Proteine umsetzen, sind selbst Komplexe aus RNA und Protein, wobei die RNA den eigentlichen Katalysator darstellt. Anscheinend enthält jede unserer Zellen in ihren Ribosomen "fossile" Relikte einer urtümlichen RNA-Welt.

Darum konzentrieren sich viele Forscher auf den Ursprung der RNA. Erbmoleküle wie DNA und RNA sind Polymere, das heißt Stränge aus kleineren Molekülen, in diesem Fall aus Nukleotiden. Die wiederum bestehen aus drei Komponenten: einem Zucker, einer Phosphatgruppe und einer Nukleinbase. Es gibt vier verschiedene Nukleinbasen; sie bilden das Alphabet, mit dem das Polymer seine Information kodiert. DNA-Nukleotide enthalten jeweils eine der Nukleinbasen A, G, C oder T (Adenin, Guanin, Cytosin oder Thymin). Im Alphabet der RNA steht U (Uracil) an Stelle von T. Die Nukleinbasen sind stickstoffreiche Verbindungen, die sich nach einer einfachen Regel paaren: A bindet immer an U - beziehungsweise an T -, und G bindet stets an C. Diese Basenpaare bilden die Sprossen der spiralförmigen DNA-Leiter, der bekannten Doppelhelix. Die korrekte Paarung ist entscheidend dafür, dass bei der Reproduktion der Zelle exakte DNA Kopien entstehen. Zucker und Phospatgruppen bilden das Rückgrat jedes Strangs.



© SPIEGEL ONLINE 2010
Alle Rechte vorbehalten
Vervielfältigung nur mit Genehmigung der SPIEGELnet GmbH


TOP
Die Homepage wurde aktualisiert. Jetzt aufrufen.
Hinweis nicht mehr anzeigen.