SPIEGEL ONLINE

SPIEGEL ONLINE

26. Februar 2013, 17:27 Uhr

Mechanik

Physiker finden Formel für perfektes Uhrwerk

Von

Schweizer Feinmechaniker wissen, wie man technisch raffinierte Uhren baut. Nun haben Forscher aus Zürich die Energiebilanz rotierender, einander berührender Scheiben analysiert. Ihre Erkenntnisse könnten helfen, Zahnräder von Uhrwerken zu perfektionieren.

Berlin - Der Artikel im Fachblatt "Physical Review Letters" ist schwindelerregend: Hans Herrmann von der ETH Zürich und seine Kollegen illustrieren ihre Studie über rotierende Scheiben mit einer optischen Täuschung - angelehnt an die "Rotating Snakes" des Japaners Akiyoshi Kitaoka.

Die Zeichnung zeigt verschieden große Scheiben, die aneinanderstoßen und sich scheinbar umeinander drehen. Herrmanns Team hat die physikalischen Eigenschaften solcher Systeme, bestehend aus Hunderten von einander berührenden Scheiben, untersucht. Dabei stellten die Forscher fest, dass man die Antriebsenergie minimieren kann - eine Erkenntnis, die Uhrenbauer eines Tages nutzen könnten, um mechanische Werke zu optimieren.

Herrmann und seine Kollegen sind von glatten Scheiben ohne Zähne ausgegangen, die in einer Ebene angeordnet und deren Achsen fixiert sind. Jede Scheibe berührt mindestens eine andere. Über solche Kontaktpunkte ist letztlich jede Scheibe direkt oder indirekt mit jeder anderen verbunden. Was passiert, wenn man eine der Scheiben langsam in Rotation versetzt?

Durch die Reibung beginnen benachbarte Scheiben, sich mitzudrehen, erklärt der ETH-Forscher Herrmann. Nach und nach würden alle rotieren. Anfangs komme es noch vor, dass eine Scheibe an einer anderen vorbeirutsche - ein als Schlupf bezeichnetes Phänomen. Aber nach einer gewissen Zeit sei das System synchronisiert, schreiben die Forscher in ihrem Fachbeitrag. Schlupf trete dann nicht mehr auf.

Schleifen ohne Schlupf

Wegen der unvermeidlichen Reibungsverluste in einem solchen Räderwerk muss dem System permanent Energie zugeführt werden. Ohne Antrieb würden die Räder ansonsten irgendwann wieder stillstehen. Die Berechnungen der Forscher haben ergeben, dass sich diese Antriebsenergie minimieren lässt. "Wenn die Masse aller Scheiben proportional zu ihrem jeweiligen Radius ist, ist die ins System gesteckte Energie am geringsten", sagt Herrmann. Welchen konkreten Wert das Verhältnis von Masse zu Radius annimmt, ist dabei egal. Entscheidend ist, dass der Wert für alle Räder gleich groß ist.

"Wir haben das Problem für Systeme mit über 2000 Scheiben gelöst", sagt der Zürcher Forscher im Gespräch mit SPIEGEL ONLINE. Für jede einzelne Scheibe gelte die Newtonsche Bewegungsgleichung: Kraft gleich Masse mal Beschleunigung. Die Lösung für das sich daraus ergebende Gleichungssystem habe man numerisch, also mit Hilfe von Computern, ermittelt.

Dabei mussten die Scheibensysteme eine Bedingung erfüllen. Die Scheiben berühren einander an den Kontaktstellen, die eine Scheibe mit der nächsten verbinden - und dabei sind auch Schleifen möglich. Wenn man immer wieder von einer Scheibe zur nächsten, mit ihr in Kontakt stehenden Scheibe springt, landet man schließlich wieder bei der ersten Scheibe, bei der man mit dem Springen begonnen hat.

Damit sämtliche Scheiben eines solchen Systems ohne Schlupf rotieren können, muss ihre Zahl in jeder denkbaren Schleife gerade sein. Das folgt unmittelbar aus den Rotationsrichtungen benachbarter Scheiben: Dreht sich ein Rad im Uhrzeigersinn, rotiert das mit ihm in Kontakt stehende Rad entgegen dem Uhrzeigersinn. Das nächste, mit dem zweiten verbundene Rad dreht dann wieder im Uhrzeigersinn und darf deshalb das erste Rad nicht berühren, wenn das System schlupffrei arbeiten soll. Beim vierten Rad hingegen ist eine Berührung mit dem ersten möglich - und auch beim sechsten, achten und so weiter.

Interessant für Designer mechanischer Uhren

Die Erkenntnis über energetisch optimierte Räderwerke könnte auch für Designer mechanischer Uhren interessant sein, meint Herrmann. Zwar kann bei darin verbauten Zahnrädern kein Schlupf auftreten wie bei aneinander reibenden Scheiben. Die Zähne verhindern dies. Aber das berechnete Energieminimum gilt genauso für Zahnräder, denn es setzt einen synchronisierten, schlupffreien Zustand voraus.

Sofern Zahnräder aus massivem Blech mit konstanter Dicke gefertigt werden, ist ihre Masse proportional zu ihrer Fläche und damit zum Radius im Quadrat. Für einen energetisch optimierten Antrieb müsste ihre Masse aber proportional zum Radius sein. Um das zu erreichen, schlägt Herrmann vor, den Rädern Löcher zu geben. Je größer ein Zahnrad ist, umso mehr Löcher wären nötig. Damit ließe sich - zumindest theoretisch - die Antriebsenergie eines Uhrwegs minimieren.

Dass Uhrenbauer dem idealen Masse-Radius-Verhältnis bei Zahnrädern bereits sehr nahe kommen, zeigt das dritte Foto der Fotostrecke: Die Zahnräder des Uhrwerks sind nicht massiv gefertigt, sondern haben Speichen. Sofern sich weder ihre Dicke noch ihre Anzahl ändert, wenn das Zahnrad größer wird, ist die Beziehung Masse proportional zum Radius erfüllt.

URL:

Mehr auf SPIEGEL ONLINE:

Mehr im Internet


© SPIEGEL ONLINE 2013
Alle Rechte vorbehalten
Vervielfältigung nur mit Genehmigung der SPIEGELnet GmbH