Fotostrecke

Organersatz: Was die Medizin heute schon kann

Foto: Genzyme Corporation

Gewebe-Design Organersatz aus der Retorte

Ersatzteile für den menschlichen Körper aus dem Labor? Schon bald könnte diese Vision medizinische Realität sein. Je genauer die Gewebe-Designer die Natur nachahmen, desto besser bewähren sich die konstruierten lebenden Strukturen als Implantate. Von Ali Khademhosseini, Joseph Vacanti und Robert Langer

Hirngespinste!, dachten viele, als zwei von uns (Langer und Vacanti) vor zehn Jahren über die Zukunft der Gewebezucht, englisch tissue engineering, schrieben. Wir diskutierten Möglichkeiten, lebende Gewebe mittels Zellen und nichtlebenden Materialien nach technischen Prinzipien für Transplantationen zu konstruieren. Nach wie vor besteht in der Medizin dringender Bedarf, Organe zu ersetzen, zu reparieren oder ihre Leistung zu verbessern. Allein in den USA verdanken fast 50 Millionen Menschen ihr Leben einer Organersatztherapie im weitesten Sinn. In den Industrienationen dürfte etwa jedem fünften über 65-Jährigen irgendwann solch eine Behandlung zugute kommen.

Die heutigen Methoden von Organersatz, ob eine Transplantation oder die Blutwäsche für Nierenkranke, retten zwar Leben. Aber solche Maßnahmen sind keineswegs eine ideale Lösung und belasten die Patienten stark. Viel besser, weil nebenwirkungsärmer, würden sich auf Betroffene zugeschnittene, auch immunologisch individuell angepasste Biogewebe eignen. Ein weiterer Vorteil von Tissue Engineering: Künstlich hergestellte lebende "Organe auf Mikrochips" wären geeignet, um etwa die Giftigkeit neuer medikamentöser Wirkstoffe auszutesten.

Mancherlei Zuchtgewebe stehen schon zur Verfügung. Sehr vielen Menschen wurde mit Haut- oder Knorpelersatz geholfen. In klinischen Tests werden Gewebe unter anderem für die Harnblase, Bronchien, Blutgefäße und Augenhornhaut erprobt. Die größte Herausforderung ist jedoch, funktionstüchtige komplette Organe herzustellen. Immerhin bringt die Forschung zur Konstruktion komplexerer Gewebe bereits vielversprechende Ergebnisse.

Obwohl noch manche Hürden bleiben: Der Ansatz ist inzwischen den Kinderschuhen entwachsen. Künstlich erzeugte Gewebe für medizinische Zwecke gehören nicht mehr ins Reich der Phantasie. Die Fortschritte in den vergangenen Jahren verdanken wir insbesondere Erkenntnissen darüber, wie Gewebe natürlicherweise entstehen, etwa beim Embryo oder bei einer Wundheilung. Schon wegen der verbesserten chemischen, biologischen und mechanischen Eigenschaften der eingesetzten Materialien wurden die Methoden des Gewebeaufbaus immer raffinierter.

Hürde inneres Adersystem

Zu den ersten verfügbaren solchen Kunstprodukten, die am Menschen ausgetestet wurden, gehörten Haut und Knorpel. Der Grund: Sie erfordern relativ wenig Blutgefäße im Inneren. Die meisten anderen Gewebe sind dagegen auf ein dichtes inneres Adernetz angewiesen, damit jede einzelne Zelle nah genug an einer Blutkapillare liegt, um mit Sauerstoff und Nährstoffen versorgt zu werden. Bis heute begrenzt dieser Faktor die Größe der gezüchteten Strukturen. Darum arbeiten viele Forscher an der Konstruktion von Blutgefäßen, die sie in die Zuchtgewebe integrieren können.

Jedes Gewebe von mehr als ein paar hundert Mikrometern Dicke benötigt ein inneres Adersystem. In den vergangenen Jahren entstanden etliche neue Verfahren, um Blutgefäße außer und innerhalb von Geweben zu züchten. Hilfreich war in vielen Fällen, dass die Forscher die Bedürfnisse und Umweltansprüche der sogenannten Endothelzellen heute besser verstehen. Mit solchen Zellen sind größere Adern ausgekleidet. Des Weiteren gelingt es immer besser, aus Kunstmaterialien winzigste Strukturen zu formen.

Zum Beispiel kann man Endothelzellen auf ein Kultursubstrat mit ultrafeinen Furchen aufbringen, die tausendmal dünner sind als ein Menschenhaar. Die Zellen erzeugen dann ein Netzwerk kapillarähnlicher Röhrchen. Die Furchen imitieren die Textur natürlicher Gewebe - ein wichtiger Umgebungsreiz -, woran sich neu wachsende Blutgefäße anlagern.

Um Adernetze zu gewinnen, nutzen Gewebeingenieure auch Techniken der Mikrochipfabrikation. Ein Beispiel: Vacanti und Jeffrey T. Borenstein vom Draper Laboratory in Cambridge (Massachusetts) erzeugten in biologisch abbaubaren Polymeren winzigste Kanälchen, die das Kapillarnetz von Geweben nachahmen. In diesen feinen Röhrchen lassen sich dann Endothelzellen kultivieren und dazu anregen, darin Blutgefäße auszubilden. Gleichzeitig schirmen diese Zellen das Gerüstmaterial gegen das Blut ab, das die Polymere sonst zu schnell zerstören würde. In einem anderen Ansatz trennt eine Filtermembran die Blutkanälchen von den Zellen für die Organfunktion, die im Kunstgewebe eingebettet sind.

Dem gleichen Zweck können Hydrogele dienen. Sie trennen Blut und Funktionszellen voneinander, erlauben aber den Austausch wichtiger Stoffe. Die gelatineartigen Materialien bestehen aus wasserhaltigen Polymernetzen. In ihren chemischen Eigenschaften ähneln Hydrogele der natürlichen Stützsubstanz (Matrix) um die Zellen in Geweben. Die funktionstragenden Zellen lassen sich darin einbetten, und Kanälchen in der Matrix werden mit Endothelzellen ausgekleidet.

Die Zucht von größeren Blutgefäßen gelang in den Labors von Laura Niklason von der Yale University in New Haven (Connecticut) und von Langer in folgender Weise: Die Forscher versetzten Gerüststrukturen mit glatten Muskel- und mit Endothelzellen und hielten sie in einem Bioreaktor in einem pulsierenden Flüssigkeitsstrom. Das sollte den Blutfluss im Körper nachahmen. Die entstandenen Ersatzarterien erweisen sich nach der Transplantation auf Tiere als mechanisch robust und funktionstauglich. Solche Adern ließen sich in größere Gewebekonstrukte einbauen oder womöglich sogar als Bypässe bei Gefäßverengung verwenden.

Zwar bedeutet die erfolgreiche Zucht feiner Kapillaren und größerer Gefäße im Labor einen Durchbruch. Allerdings überlebt ein außerhalb des Körpers konstruiertes Gewebeimplantat nur dann, wenn es schnell Kontakt zu Blutgefäßen des Empfängers findet. Den Körper des Patienten seinerseits zur raschen Gefäßneubildung anzuregen ist daher essentiell. Einen Weg zeigte David Mooney von der Harvard University in Cambridge auf: Polymerkügelchen oder das Matrixmaterial setzen kontrolliert Wachstumsfaktoren frei; diese treiben die Bildung von Blutgefäßen an, die in das implantierte Gewebe einwachsen.

Eine Variante dieses Prinzips erprobt die Biotechnologiefirma Pervasis Therapeutics (an der Langer und Vacanti beteiligt sind) bereits in fortgeschrittenen klinischen Studien bei Gefäßverletzungen. Am betroffenen Ort wird ein dreidimensionales Gerüst mit glatten Muskelzellen und Endothelzellen implantiert. Das Gerüst gibt wachstumsstimulierende Signale ab, die eine natürliche Reparatur fördern.

Die Bioingenieure haben aber immer noch Schwierigkeiten, taugliche Gefäßtransplantate und durchblutete Gewebe von einiger Größe zu konstruieren. Viele der übertragenen Zellen sterben an Unterversorgung, denn es dauert einige Zeit, bis neue körpereigene Blutgefäße in die Struktur einwachsen. Wahrscheinlich müssen große Gewebeimplantate deswegen von vornherein ein Gefäßsystem enthalten. Das ließe sich mit Faktoren für ein zusätzliches Aderwachstum kombinieren, die kontrolliert freigegeben werden.

Zudem kommt es natürlich darauf an, dass die gezüchteten Gefäße im Implantat mit denen des Empfängers Verbindung aufnehmen. Wenn die Forscher genauer verstünden, welche Signalmuster von beiden Seiten hierbei mitwirken müssen, so könnten sie das Zusammenwachsen unterstützen. Mehr Kenntnisse über die Kommunikation von Zellen untereinander und mit ihrer sonstigen Umwelt wären ohnehin für Gewebekonstrukteure wünschenswert - etwa, um die geeignetsten biologischen Materialien auszuwählen.

Ideal sind Zellen des Patienten

In den meisten Fällen würde man das Implantat idealerweise mit Zellen des Patienten herstellen, weil es sich dann am besten mit seinem Immunsystem vertrüge. Zudem wäre so sicherlich eine Genehmigung der Maßnahme leichter zu erhalten. Allerdings lassen sich normale - ausdifferenzierte - Körperzellen nur sehr begrenzt im Labor vermehren. Bereitwilliger teilen sich sogenannte adulte (nicht mehr embryonale) Stammzellen. Sie finden sich in vielen Geweben und können je nach Herkunft zu verschiedenen für das Herkunftsgewebe typischen Zellsorten ausreifen. Man kann sie etwa aus Blut, Knochen, Muskulatur, Blutgefäßen, Haut, Haarwurzeln, Darm, Gehirn oder Leber isolieren.

Solche adulten Stammzellen sind allerdings schwer von den normalen Gewebezellen zu unterscheiden. Die Forscher orientieren sich an bestimmten Oberflächenproteinen, also an molekularen Markierungen. Für das Gewebedesign wäre es hilfreich, noch mehr solche Oberflächenmarker zu finden. Glücklicherweise gab es auf dem Feld in den vergangenen Jahren ein paar gute Fortschritte. Insbesondere entstanden neue Methoden, um adulte Stammzellen zu isolieren, sie zur Vermehrung anzuregen und sie dazu zu bringen, sich im Labor in verschiedene Zell- und Gewebetypen auszudifferenzieren.

Sogenannte mesenchymale Stammzellen reagieren auf mechanische Umgebungsreize, wie Christopher Chen und Dennis Discher von der University of Pennsylvania in Philadelphia zeigten. Gewöhnlich gewinnt man solche Stammzellen aus Muskel-, Knochen oder Fettgewebe. Das gezüchtete Gewebe wird zu der Sorte Zellen, die in ihrer Festigkeit der des Kultursubstrats am ehesten ähneln. Andere Forscher erkannten einen Einfluss chemischer Signale von Substrat und Umgebung darauf, zu welchem Gewebetyp adulte Stammzellen sich ausdifferenzieren. Uneins sind die Experten aber noch darin, ob sie Zelltypen außerhalb von deren eigener Gewebefamilie hervorbringen können, ob also etwa eine mesenchymale Stammzelle Leberzellen zu produzieren vermag.

Anders als die adulten lassen sich embryonale Stammzellen nicht nur leicht vermehren, sie können auch sämtliche Zellsorten hervorbringen. Langer und der Arbeitsgruppe von Shulamit Levenberg vom Technion-Israel Institute of Technology in Haifa gelang die Differenzierung von gewünschten Gewebetypen sogar auf einem synthetischen Trägergerüst. Demnach müsste es möglich sein, mit embryonalen Stammzellen auf einer Vorlage direkt ein dreidimensionales Gewebe zu erzeugen.

Allerdings lässt die Handhabung embryonaler Stammzellen noch zu wünschen übrig. Bisher ist es schwierig, ihnen eine einheitliche Richtung vorzugeben, in die sie sich ausdifferenzieren sollen. In der Natur geschieht das durch recht komplexe Einflüsse. Um diese möglichst nachzuahmen, erproben die Forscher jetzt verschiedenste Kombinationen von Matrixmaterialien und Signalsubstanzen. Gleichzeitig suchen sie unter zahlreichen kleinen Molekülen und diversen Signalproteinen nach Kontrollfaktoren für die Stammzelleigenschaften: Die Zellen sollen zwar differenzierte Nachkommen hervorbringen, selbst aber undifferenziert bleiben, damit sie später neuen Bedarf decken können. Vielleicht lassen sich mit solchem Wissen auch Zellen produzieren, die nur die günstigen, nicht aber die unerwünschten Eigenschaften von embryonalen Stammzellen aufweisen.

Leider können die Wissenschaftler immer noch nicht genau voraussagen, wie sich transplantierte Stammzellen im Patienten verhalten werden. Beispielweise besteht die Gefahr, dass undifferenzierte embryonale Stammzellen Tumoren bilden. Falls nicht sämtliche übertragenen Zellen vor der Implantation ein Stück weit ausdifferenziert sind, stellt das somit ein Krebsrisiko dar. Überdies müssen die Forscher ethischen Bedenken Rechnung tragen, aus menschlichen Embryonen Stammzellen zu gewinnen. Sie verfolgen mittlerweile Ansätze, ähnlich geartete Zellen aus nichtembryonalen Geweben zu erzeugen. Damit kamen sie in den letzten Jahren ein gutes Stück weiter. Es gelingt bereits, zum Beispiel Hautzellen in einen früheren, weniger differenzierten Zustand zurückzuprogrammieren. Für das Gewebedesign wären solche sogenannten induzierten pluripotenten Stammzellen eine begrüßenswerte, hochinteressante Alternative.

Rückwege zu Stammzellen

Im Jahr 2007 konnten Shinya Yamanaka, damals an der Kyoto University, und James A. Thomson von der University of Wisconsin in Madison erstmals reife Zellen in den Zustand pluripotener Stammzellen zurückverwandeln, indem sie einige genetische Signalwege reaktivierten, die für solche Stammzellen offenbar vonnöten sind. Damals gelang das mit nur vier eingebrachten Regulatorgenen. Später vermochten Forscher die Anzahl der aktivierten Erbfaktoren sogar immer weiter zu reduzieren.

Zum Einschleusen der Gene in die Zellen dienten zunächst Viren. So erzeugte Implantate für Menschen bergen aber Risiken. Umso besser, dass die Rückprogrammierung des Zellgenoms inzwischen auch auf andere Weise gelingt, selbst ohne Genübertragung und durch Ansprache eines einzigen Gens. Angesichts der raschen Entwicklungen auf diesem Forschungsfeld sind die Bioingenieure zuversichtlich, schon bald Ersatzgewebe aus umprogrammierten patienteneigenen Zellen herstellen zu können. Das wäre dafür das ideale Ausgangsmaterial.

Wenn man nun die passenden Zellen gewonnen hat - wie entsteht daraus im Labor ein funktionsfähiges Gewebe? Noch vor zehn Jahren glaubten die Wissenschaftler, die verschiedenen reifen Zellen wüssten praktisch von allein, wie sie miteinander zum korrekten Gewebetyp - dem ihrer Herkunft - zusammenfinden. Bis zu einem gewissen Grad funktioniert das tatsächlich. Doch wird mittlerweile immer klarer, welch komplexe Signalmuster zwischen ihnen sowie im Austausch mit der Umgebung auftreten, wenn sich Organe und Gewebe ausbilden beziehungsweise später, wenn die reifen Strukturen arbeiten. Wichtig sind zudem offenbar klare räumliche Vorgaben, sozusagen ein Maßrahmen.

Ein Ersatzgewebe sollte die gleichen spezifischen Aufgaben erfüllen können wie sein natürliches Vorbild. Nach aller Erfahrung gelingt das am besten durch möglichst genaues Nachahmen der betreffenden biologischen Eigenschaften. In komplexeren Organen arbeiten verschiedene Zelltypen zusammen. So gehören zu den Funktionen der Leber unter anderem Entgiftung und Nährstoffverwertung. Soll ein Kunstprodukt die gewünschten Leistungen etwa eines Organs erbringen, kommt es folglich darauf an, auch die Mikroarchitektur des natürlichen Gewebes und die Lage der Zellen zueinander nachzubilden.

Damit die Zellanordnung einer dreidimensionalen Struktur grob den natürlichen Verhältnissen entsprach, verwendeten Gewebedesigner früher Gerüste aus unterschiedlichen Materialien. Mittlerweile gelingen zunehmend komplexere Zuchtgewebe. Selbst die Umgebungsbedingungen lassen sich immer genauer nachempfinden. Als Matrix kann beispielsweise ein "Gewebeskelett" dienen: Aus einem natürlichen Gewebe werden alle Zellen entfernt, so dass nur die Bindegewebsfasern übrig bleiben. In dieser Struktur wird mit frischen Zellen ein neues Gewebe herangezüchtet, das wieder einen Großteil der ursprünglichen Funktionen erbringt. Ein eindrucksvolles Beispiel: Zellfreie Gerüste von Nagetierherzen wurden mit Herzmuskel- und Endothelzellen bepflanzt. Daraufhin entstanden tatsächlich Herzmuskelfasern sowie Gefäßstrukturen und schließlich wieder ein schlagendes Herz.

Auch mit Druckverfahren lassen sich Zellen präzise anordnen. Modifizierte Tintenstrahldrucker verteilen Zellen oder Matrixmaterial so, dass Gewebe beziehungsweise Strukturen entstehen, auf denen Zellen wachsen. Ist die Schablone den natürlichen Verhältnissen nachempfunden, können sich die Zellen daran wunschgemäß orientieren.

Eine andere Technologie aus dem Ingenieurwesen, das Elektrospinnen, eignet sich, um Gerüste mit einer Textur wie natürliche Gewebematrix zu produzieren. Hierbei werden sehr dünne Polymerfasern netzartig versponnen und ergeben räumliche Gebilde nach dem Vorbildgewebe. Die mechanischen und chemischen Eigenschaften des Materials lassen sich zudem bedarfsgerecht anpassen. Ähnliche Gerüste hat David Kaplan von der Tufts University in Boston aus Seide hergestellt - "Spinnennetze " als Grundlage für Bänder und Knochengewebe.

Hydrogele eignen sich ebenfalls gut, weil sie so angepasst werden können, dass sie die Zellen umhüllen, stützen und zugleich die Gewebefunktion verbessern. Denn ihre biologischen, chemischen und mechanischen Eigenschaften lassen sich recht einfach beeinflussen. Auch ein Hydrogel kann man mitsamt darin enthaltenen lebenden Zellen mit Druckverfahren ausbringen oder auf andere Weise nach Erfordernis verteilen und schichten. Einem von uns (Khademhosseini) gelang es, zellhaltige Hydrogelbausteine - auch mit jeweils andersartigen Zellen - in verschiedensten zueinander passenden Formen herzustellen, die sich dann selbst zu größeren, komplexen Aggregaten zusammenlagern.

In der Art ließe sich die natürliche Anordnung von Zellen etwa in der Leber nachbilden. Manche speziellen Hydrogele vernetzen sich unter UV-Licht und lassen sich damit in der gewünschten Form verfestigen. Kristi Anseth von der University of Colorado in Boulder und Jennifer Elisseeff von der Johns Hopkins University in Baltimore (Maryland) bauten auf die Weise Knorpel- und Knochengewebe nach.

Auf die Signale kommt es an

Zudem lässt sich das Material mit Stoffen versetzen, die das Wachstum des Gewebes oder die Zelldifferenzierung fördern. Nach Samuel Stupp von der Northwestern University (Illinois) werden neuronale Stammzellen in einem Gel zu Nervenzellen, sofern dieses bestimmte kleine Signalproteine für ihre Ausreifung enthält. Helen M. Blau von der Stanford University (Kalifornien) hat untersucht, wie sich individuelle Stammzellen mittels Hydrogelen erforschen und beeinflussen lassen, wenn dieses Medium Komponenten der natürlichen extrazellulären Matrix aufweist.

Nicht zuletzt hilft Nanotechnologie, transplantierbare Zellschichten herzustellen. Teruo Okano von der Tokyo Women's Medical University hat dafür spezielle Oberflächen entwickelt, die mit einem temperaturempfindlichen Polymer beschichtet sind. Dieses schwillt an, wenn die Temperatur von 37 auf 20 Grad sinkt. Darauf werden Zellen einschichtig kultiviert. Später wird die Temperatur abgesenkt, das Substrat verdickt sich und die gewachsene Zellschicht hebt sich ab. Die Zellen selbst haben zuvor genug Matrixmoleküle produziert, um zusammenzuhalten. Solche Schichten lassen sich nun stapeln oder rollen, so dass man daraus größere Gewebekonstrukte erzeugen kann.

So groß die Fortschritte beim Tissue Engineering im Ganzen sind - es gibt immer noch manche Hindernisse. Zum Beispiel kennen wir bisher die natürlichen Konzentrationen und Kombinationen von Wachstumsfaktoren und extrazellulären Molekülen in den einzelnen Entwicklungsstadien der verschiedenen Gewebe oder auch bei deren Wundheilung nicht gut genug. Die Bioingenieure müssten diese Prozesse im Detail noch besser verstehen, damit die Konstrukte sich mehr wie natürliche Organe und Gewebe verhalten.

Mitunter suchen die Designer gern in anderen Forschungsgebieten neue Ideen. So interessieren sie sich für Studien über Gen- und Proteininteraktionen in reifendem und regenerierendem Gewebe. Deren Ergebnisse, angewandt bei fortschrittlichen Zellkultursystemen, lassen uns das Zellverhalten unter künstlichen Bedingungen immer besser beherrschen.

Zwar bleibt noch manches zu wünschen. Trotzdem ist die Gewebezucht im Labor kein reines Hirngespinst mehr. Einfachere Produkte sind schon im klinischen Einsatz. Bald dürften von den Technologien Millionen Patienten profitieren. Schon im Jahr 2008 lag der Umsatz mit gezüchteten Geweben nah an 1,5 Milliarden US-Dollar. Solche Zahlen sind angesichts der zunächst erlebten harten Rückschläge umso bemerkenswerter. Während zur Jahrtausendwende noch Optimismus herrschte und viel in das Feld investiert wurde, gingen nach der Internetkrise die Investitionen in neue Biotechnologiefirmen zurück. In den USA waren selbst Unternehmen, die für Gewebekonstrukte Zulassungen besaßen, gehalten, ihr Geschäftsmodell zu überdenken, und so manches Produkt kam verzögert auf den Markt. Naturgemäß sind die Zulassungs- und Prüfverfahren für solche Erzeugnisse zeitaufwändig und teuer. Sie enthalten lebende Zellen, biologisch aktive Wirkstoffe und nichtbiologische Materialien. Damals erschwerten fehlende finanzielle Zuschüsse die Durchführung umfangreicher klinischer Studien. Doch die Verzögerungen hatten eine positive Seite: Die Technologien konnten weiter reifen und die Geschäftsmodelle besser angepasst werden.

Zulassungsverfahren werden schon dadurch erschwert, dass sich gleiche Zellen von verschiedenen Personen nicht immer gleich verhalten. Ebenso reagieren Empfänger manchmal auf das gleiche Produkt unterschiedlich. Solche Unwägbarkeiten erfordern weitere Forschung zur individuellen Variabilität, auch klinische Testreihen mit Gewebeimplantaten. Die hohen Kosten dafür müssen Geschäftsmodelle künftig einkalkulieren.

Ungehindert all der Einschränkungen haben die Gewebekonstrukteure schon eine zweite Produktgeneration im Blick. Dabei wollen sie auf neue Einsichten zugreifen, die über die Ausbildung und Regeneration von natürlichen Strukturen vorliegen. Die angestrebten Konstrukte sollen sich mechanisch, chemisch und funktional enger als bisher möglich an das Vorbild anlehnen. Trotz der angespannten ökonomischen Lage erwarten wir, dass Ansätze aus der Nanotechnologie, Stammzellforschung, Systembiologie und dem Gewebedesign in naher Zukunft zusammenwachsen. Das sollte neue Ideen für hochentwickelte Ersatzorgane bringen, die so viele Menschen dringend benötigen.

Die Wiedergabe wurde unterbrochen.