"Hubble"-Entdeckung 3 Sterne im Todeskampf

Der Theorie zufolge enden Sterne mit mehr als der achtfachen Masse unserer Sonne in einer Supernovaexplosion. Hat ein Stern seinen nutzbaren Nuklearbrennstoff aufgebraucht, verliert er schlagartig den Kampf gegen sein eigenes Gewicht.


Zurück zur Übersicht

Sein Kern kollabiert zu einem Neutronenstern – ein stabiler, extrem dichter Überrest –, während das Gas der äußeren Schichten mit hoher Geschwindigkeit ins All geschleudert wird.

Supernova 1987A: Trifft eine Stoßwelle auf eine sanduhrförmige Gaswolke, bilden sich helle Ringe
Raghvendra Sahai/John Trauger (JPL),WFPC2 science team/NASA

Supernova 1987A: Trifft eine Stoßwelle auf eine sanduhrförmige Gaswolke, bilden sich helle Ringe

Diese Theorie direkt zu überprüfen ist jedoch nicht leicht, denn in unserem Milchstraßensystem ist die letzte Supernova im Jahr 1680 explodiert – lange vor der Erfindung moderner Teleskope und Messinstrumente. Doch am 23. Februar 1987 erhielten die Astronomen einen nahezu gleichwertigen Ersatz, als das Licht von einer Supernova in der Großen Magellanschen Wolke, einer Begleitgalaxie der Milchstraße, die Erde erreichte.

Damals war "Hubble" noch nicht im All, aber drei Jahre später begann das Weltraumteleskop damit, die weiteren Ereignisse im Umfeld des explodierten Sterns zu verfolgen. Die Forscher entdeckten ein System aus drei Ringen um die Stelle, an der sich vor der Explosion ein massereicher Stern befand. Der innere Ring scheint die schmale Taille einer sanduhrförmigen Gaswolke zu repräsentieren, während es sich bei den beiden größeren Ringen um deren Enden handelt. Diese Wolken sind offenbar schon Tausende von Jahren vor der Explosion des Sterns entstanden.

Im Jahr 1994 entdeckten Astronomen mit "Hubble" helle Punkte, die entlang dem inneren Ring aufleuchteten – genau wie es die Theorie für den Fall vorhergesagt hatte, dass die von der Supernova ausgestoßene Materie auf den Ring stößt.

Im Gegensatz zu massereichen Sternen verläuft das Ende sonnenähnlicher Sterne weniger spektakulär. Ohne zu explodieren, stoßen sie im Verlauf von rund zehntausend Jahren ihre äußeren Gasschichten ab. So wird der heiße Kern des Sterns freigelegt, und dessen Strahlung ionisiert das ausgestoßene Gas, was durch die Anregung ionisierten Sauerstoff- und Wasserstoffgases zur Aussendung grünen und roten Lichts führt.

Solche leuchtende Gaswolken werden bis heute "Planetarische Nebel" genannt, ein missverständlicher Begriff, der daran erinnert, dass manche Astronomen des 18. Jahrhunderts diese Objekte zunächst für Planeten hielten. Heute kennen wir etwa zweitausend Planetarische Nebel. Die Aufnahmen des "Hubble"-Teleskops zeigen in zuvor unerreichter Detailfülle, welche außerordentlich komplexe Formen sie besitzen können.

Einige der Nebel bestehen aus zahlreichen konzentrischen Ringen, die vermutlich darauf hinweisen, dass die Abstoßung der Hüllen unregelmäßig verläuft, wobei wohl etwa 500 Jahre zwischen zwei Ausstößen vergehen. Das ist zu lang, um auf dynamische Pulsationen zurückzugehen, bei denen sich der Stern im Wechselspiel von Schwerkraft und Gasdruck zusammenzieht und aufbläht. Andererseits ist diese Zeitspanne zu kurz, um auf thermischen Pulsationen zu beruhen, die als Zeichen eines Gleichgewichtsverlusts des Wärmetransports im Sterninneren gelten – und so bleibt die Ursache für die Formen der Planetarischen Nebel weiter rätselhaft.

Weiter zu: 4 - Kosmische Geburten



© SPIEGEL ONLINE 2006
Alle Rechte vorbehalten
Vervielfältigung nur mit Genehmigung


TOP
Die Homepage wurde aktualisiert. Jetzt aufrufen.
Hinweis nicht mehr anzeigen.